por Kiko Ramos | Ene 3, 2025 | Noticias
Substrate AI, una empresa valenciana de inteligencia artificial que cotiza en BME Growth, ha contratado a la consultora LKS Next para preparar la salida a bolsa de su filial 4D Medica.
LKS Next forma parte de la Corporación Mondragón y cuenta con un total de 800 profesionales especializados en los sectores industrial, tecnológico y de salud. Su experiencia incluye asesoramiento en fusiones, adquisiciones y mercados de capitales, por lo que ayudará a Substrate AI en la preparación de la salida a bolsa. Desde la elaboración de la documentación necesaria, la elección del mercado más adecuado para la oferta pública inicial (IPO) y en la búsqueda de inversores, considerando las particularidades del negocio de 4D Medica.
Adquisición de 4D Medica por parte de Substrate AI
Substrate AI adquirió el 70% de 4D Medica en 2022 por 1,4 millones de euros. Originalmente, 4D Medica se dedicaba a la venta de hardware de diagnóstico por imagen para el sector veterinario, bajo la dirección de su fundador y CEO, Francesc Ramos, con más de 20 años de experiencia en el sector.
Tras la adquisición, se transformó en una empresa de IA aplicada al diagnóstico por imagen, con divisiones de hardware y software, operando tanto en el ámbito veterinario como en la medicina humana.
La compra de Diagximag se integra a la filial 4D Medica
En 2023, Substrate AI compró Diagximag, una empresa enfocada en hardware para medicina humana y principal distribuidor de Samsung en España, integrándola con 4D Medica. Además, se desarrolló un software de diagnóstico por imagen basado en IA para ayudar a los médicos y veterinarios a obtener diagnósticos más precisos, que próximamente estará disponible también para la medicina humana.
Este software busca mejorar el diagnóstico de enfermedades y reducir la exposición a radiación de pacientes y médicos mediante la autorregulación del colimador en equipos de radiación iónica.
Crecimiento de las ventas de 4D Medica desde 2021
Gracias a estas iniciativas, 4D Medica ha triplicado sus ventas en tres años, pasando de 1,8 millones de euros en 2021 a una cifra tres veces mayor en 2024, manteniendo un margen EBITDA superior al 25%.
«Estamos muy satisfechos con el camino recorrido en tan solo dos años. Junto a Substrate AI, y gracias a su tecnología y apoyo, hemos transformado la compañía y nos hemos preparado para convertirnos en uno de los actores clave en la aplicación de la IA al diagnóstico por imagen, una pieza esencial de la medicina actual y futura», afirma Francesc Javier Ramos, CEO de 4D Medica.
Por ello, el siguiente paso es el trabajo conjunto de LKS Next, Substrate AI y 4D Medica para que la salida a bolsa se ajuste a las necesidades del plan de crecimiento de la compañía.
Kiko Ramos
CEO de 4D Medica. Experto en comercialización y distribución de equipamiento médico.
por Kiko Ramos | Dic 27, 2024 | Análisis de equipos
El arco en C es un equipamiento médico especializado utilizado en radiología y procedimientos intervencionistas para obtener imágenes en tiempo real del interior del cuerpo humano mediante rayos X. Se trata de un dispositivo móvil que permite la toma de imágenes radiológicas y fluoroscópicas. Su nombre deriva de su estructura en forma de “C”, que permite un rango amplio de movimientos y la adquisición de imágenes desde múltiples ángulos y posiciones para capturar vistas anatómicas específicas sin mover al paciente.
Se emplea para obtener imágenes de rayos X y fluoroscopia sin tener que desplazar al paciente al departamento de radiología. Por lo tanto, se pueden realizar diagnósticos y procedimientos en la cama de hospitalización donde se encuentra el paciente o en la mesa de cirugía durante una intervención. Su uso resulta esencial en áreas como cirugía, ortopedia, traumatología, cardiología, neurología, urología y procedimientos mínimamente invasivos.
Entre las principales ventajas que ofrece el arco en C, es que permite facilitar el diagnóstico, ofrece una gran precisión y seguridad, y disminuye la duración de las intervenciones quirúrgicas en las que el paciente está bajo anestesia general. En el siguiente artículo, analizamos cómo funciona un arco en C, partes, funciones y principales aplicaciones y usos de este equipamiento médico.
¿Cómo funciona un arco en C?
El funcionamiento de un arco en C quirúrgico es como el de las máquinas de rayos X convencionales. Combina dos elementos principales que trabajan de manera integrada para ofrecer imágenes claras, precisas y dinámicas. ¿Cómo es este proceso?
Generador de rayos X
El proceso comienza con el tubo de rayos X, ubicado en uno de los extremos del brazo en “C”. Este componente emite un haz de radiación que atraviesa el cuerpo del paciente. Los colimadores, que son dispositivos ajustables en el tubo, delimitan el campo de radiación, asegurándose de que solo se irradie la zona de interés. Esto no solo mejora la calidad de la imagen, sino que también minimiza la exposición a la radiación en otras áreas.
Cuando el haz de rayos X atraviesa el cuerpo del paciente, interactúa con los diferentes tejidos, generando un fenómeno llamado absorción diferencial. Los tejidos más densos, como los huesos, absorben más radiación y se representan como áreas blancas en la imagen. Por otro lado, los tejidos blandos y áreas llenas de aire permiten que los rayos pasen con mayor facilidad, apareciendo en tonos grises o negros. Esta diferencia en la absorción es lo que crea el contraste en las imágenes radiológicas.
Detector de imágenes o intensificador
En el extremo opuesto al tubo de rayos X, se encuentra el detector de imágenes o intensificador. Este componente recibe los rayos que han atravesado al paciente y los convierte en señales eléctricas. Los detectores modernos, llamados detectores planos digitales, procesan estas señales para generar imágenes de alta resolución. Este avance ha reemplazado en gran medida a los intensificadores tradicionales, ofreciendo mayor nitidez y menor exposición a radiación.
Las señales capturadas por el detector son enviadas a un sistema de procesamiento que convierte los datos en imágenes digitales. Este software optimiza automáticamente parámetros como el contraste, brillo y nitidez para garantizar que las imágenes sean claras y fáciles de interpretar. Estas imágenes se muestran en tiempo real en monitores conectados al sistema, permitiendo al equipo médico observar el área de interés mientras se realiza el procedimiento.
Conoce nuestros equipos de 4D Medica
Arco en C: Partes y funciones
El arco en C en radiología consta de varias partes que trabajan juntas para proporcionar imágenes de alta calidad en tiempo real durante procedimientos médicos. A continuación, detallamos sus principales componentes y funciones:
Parte |
Descripción |
Brazo en forma de C |
Estructura central que conecta el tubo de rayos X con el detector. |
Tubo de rayos X |
Ubicado en un extremo del brazo en «C», emite el haz de radiación. |
Detector de imágenes |
En el extremo opuesto al tubo de rayos X, captura la radiación que atraviesa al paciente. |
Base móvil |
Estructura con ruedas que soporta el equipo y facilita su transporte. |
Panel de control |
Consola operativa desde donde se ajustan los parámetros del equipo. |
Monitores |
Pantallas conectadas al sistema de procesamiento de imágenes. |
Sistema de colimadores |
Dispositivo ajustable ubicado en el tubo de rayos X. |
Sistema de refrigeración |
Componentes que disipan el calor generado por el tubo de rayos X. |

Partes de un arco en C
1. Brazo en forma de “C”
Es la estructura principal que conecta los componentes esenciales del equipo, como el tubo de rayos X y el detector de imágenes.
Funciones:
- El brazo en forma de “C” conecta el tubo de rayos X, que se sitúa en un extremo, con el detector de imágenes o intensificador, que está ubicado en el extremo opuesto, permitiendo un rango amplio de movimientos alrededor del paciente.
- Facilita la obtención de imágenes desde múltiples ángulos sin necesidad de mover al paciente.
- Incluye rotaciones en múltiples planos: horizontal, orbital y vertical, lo que permite adaptarse a diferentes tipos de procedimientos.
2. Tubo de rayos X
Se trata del generador de radiación ubicado en uno de los extremos del brazo en “C”.
Funciones:
- Emite los rayos X que atraviesan el cuerpo del paciente.
- Su intensidad y duración se controlan para obtener imágenes de calidad mientras se minimiza la exposición a la radiación.
- La seguridad es un aspecto clave en el uso del arco en C. Estos dispositivos están diseñados para minimizar la exposición a la radiación, tanto para el paciente como para el personal médico. Cuentan con sistemas específicos que reducen la radiación dispersa y los dosímetros integrados monitorizan continuamente la dosis entregada.
3. Intensificador de imágenes o detector plano digital
Se encuentra ubicado en el lado opuesto al tubo de rayos X, capturando la radiación que atraviesa al paciente.
Funciones:
- Convierte los rayos X en imágenes visibles en tiempo real.
- Los detectores planos digitales más modernos ofrecen imágenes de mayor resolución y menor exposición a la radiación en comparación con los intensificadores tradicionales.
4. Consola de control
Es el panel de control externo que maneja el técnico radiólogo durante el diagnóstico.
Funciones:
- Permite ajustar los parámetros de exposición, como el tiempo y la intensidad, entre otros aspectos.
- Controla el movimiento del arco y la orientación de las imágenes.
- Guarda y transmite las imágenes obtenidas para su análisis posterior. Los datos quedan almacenados en un sistema PACS (Picture Archiving and Communication System), permitiendo un acceso rápido y fácil para su posterior análisis.
3. Monitor
El arco en C incluye uno o varios monitores de alta resolución, generalmente en Full HD, que permiten a los médicos visualizar las imágenes en tiempo real durante los procedimientos. Esta pantalla está conectada al sistema, generalmente ubicada cerca del campo quirúrgico.
Funciones:
- Muestra las imágenes radiológicas y fluoroscópicas en tiempo real para que los médicos puedan guiarse durante el procedimiento.
- Algunos sistemas incluyen monitores duales para comparar imágenes en tiempo real con otros análisis previos.
6. Sistema de movilidad
Se trata de una base rodante con ruedas bloqueables o sistema de soporte fijo en modelos más grandes.
Funciones:
- Facilita el transporte del arco en C entre diferentes áreas del hospital.
- Permite posicionar el equipo de manera estable y segura alrededor del paciente.
7. Generador de energía
Proporciona la potencia necesaria para operar el tubo de rayos X y otros componentes del sistema.
Funciones:
- Regula el suministro eléctrico para garantizar un rendimiento constante durante el uso.
8. Software de procesamiento de imágenes
Mediante un software para radiodiagnóstico, el sistema computarizado gestiona la adquisición, procesamiento y almacenamiento de las imágenes médicas.
Funciones:
- Mejora la calidad de las imágenes mediante técnicas como el ajuste de contraste y la reducción de ruido.
- Permite realizar mediciones y anotaciones directamente sobre las imágenes.
9. Sistema de colimadores
Es el dispositivo ubicado en el tubo de rayos X que se encarga de controlar el área irradiada que se quiere analizar o tratar.
Funciones:
- Ajusta el campo de radiación para enfocarse únicamente en la zona de interés.
- Reduce la exposición innecesaria a la radiación tanto para el paciente como para el personal médico.
10. Sistema de refrigeración
El sistema de refrigeración es el mecanismo para disipar el calor generado por el tubo de rayos X.
Funciones:
- Mantiene la temperatura del equipo dentro de los límites operativos seguros.
- Prolonga la vida útil del tubo de rayos X.
Usos y aplicaciones clínicas de un arco en C en radiología
El arco en C es un dispositivo médico ampliamente utilizado en radiología y en la especialidad de radiología intervencionista debido a su capacidad para generar imágenes en tiempo real con alta precisión. ¿Cuáles son sus principales usos y aplicaciones clínicas?
Cirugía ortopédica
En el ámbito de la cirugía ortopédica, el arco en C es fundamental para la colocación precisa de tornillos, clavos intramedulares y placas utilizadas en el tratamiento de fracturas. También se emplea para guiar procedimientos de reducción de fracturas o corrección de deformidades. Su capacidad para proporcionar imágenes claras y en tiempo real permite al cirujano visualizar las estructuras óseas y garantizar que los implantes se posicionen correctamente, reduciendo el riesgo de errores durante la operación.
Cirugía de columna vertebral
En las intervenciones de columna, el arco en C facilita la colocación precisa de dispositivos de fijación como tornillos pediculares y soportes para fusión espinal. A su vez, también se utiliza en procedimientos como la vertebroplastia. Las imágenes en tiempo real que genera son cruciales para evitar lesiones a estructuras nerviosas sensibles y para garantizar un resultado exitoso.
Radiología intervencionista
El arco en C es una herramienta esencial en la radiología intervencionista, donde se utiliza para procedimientos guiados como biopsias, drenajes y ablaciones tumorales. También es indispensable en angiografías, donde la subtracción digital de imágenes (DSA) permite visualizar vasos sanguíneos con alta precisión. Este equipo facilita la realización de procedimientos mínimamente invasivos, que requieren imágenes detalladas y en tiempo real para garantizar resultados precisos.
Cardiología intervencionista
En cardiología, el arco en C se utiliza en procedimientos como las angiografías coronarias, que evalúan la circulación en las arterias del corazón. También es clave para la implantación de marcapasos y otros dispositivos cardíacos. Gracias a las imágenes dinámicas que proporciona, los médicos pueden realizar intervenciones complejas con mayor seguridad y precisión.
Cirugía vascular
En la cirugía vascular, el arco en C permite visualizar con detalle el sistema vascular, lo que facilita procedimientos como la colocación de endoprótesis (stents) para reparar aneurismas o la inserción de filtros en la vena cava.
Urología
En urología, este equipo es utilizado para guiar procedimientos como la colocación de catéteres ureterales o nefrostomías. También es útil en la nefrolitotomía percutánea, donde se extraen cálculos renales mediante técnicas mínimamente invasivas. Las imágenes en tiempo real ayudan a los médicos a localizar estructuras específicas y a evitar daños en tejidos circundantes.
Gastroenterología
En procedimientos gastroenterológicos, el arco en C se utiliza para insertar tubos de alimentación o drenajes, así como para colocar prótesis esofágicas. Este dispositivo es especialmente útil en procedimientos delicados donde la precisión es crucial, como en áreas de difícil acceso dentro del tracto gastrointestinal.
Neurocirugía
En neurocirugía, el arco en C es utilizado para procedimientos como la colocación de electrodos para estimulación cerebral profunda o en cirugías espinales mínimamente invasivas. La capacidad de generar imágenes intraoperatorias de alta precisión es fundamental para navegar en las estructuras complejas del sistema nervioso y garantizar la seguridad del paciente.
Oncología
En el tratamiento del cáncer, el arco en C es una herramienta valiosa para ablaciones por radiofrecuencia o microondas, donde se destruyen tumores localizados. También se utiliza para la colocación de marcadores que guían la radioterapia. Su capacidad para generar imágenes precisas permite una ubicación exacta de los instrumentos en los tejidos malignos, optimizando el tratamiento.
Traumatología
En situaciones de emergencia o en traumatología, el arco en C se utiliza para evaluar fracturas complejas y guiar procedimientos de reducción. Permite verificar en tiempo real el alineamiento correcto de los huesos, lo que es crucial para garantizar la recuperación funcional del paciente.
Procedimientos de emergencia
En entornos de emergencia, este equipo es indispensable para la evaluación inmediata de lesiones graves, como traumatismos mayores, y para guiar procedimientos críticos como el drenaje torácico. Su capacidad para generar imágenes inmediatas permite a los médicos tomar decisiones rápidas y salvar vidas en situaciones críticas.
Odontología y cirugía maxilofacial
En odontología y cirugía maxilofacial, el arco en C se utiliza para la colocación de implantes dentales y la planificación quirúrgica en la región mandibular. Proporciona imágenes detalladas de las estructuras óseas del cráneo y la mandíbula, asegurando resultados precisos.
Ginecología y obstetricia
En ginecología, este equipo se emplea para procedimientos intervencionistas como la colocación de dispositivos intrauterinos o catéteres utilizados en tratamientos de fertilidad. Su uso mejora la precisión de los procedimientos en áreas sensibles, aumentando la seguridad y efectividad.
Conclusión
El arco en C destaca por su versatilidad, ya que se utiliza en múltiples especialidades médicas. Su capacidad para ofrecer imágenes en tiempo real facilita la toma de decisiones durante procedimientos complejos, reduciendo errores y mejorando los resultados clínicos. Además, al permitir intervenciones mínimamente invasivas, contribuye a una recuperación más rápida de los pacientes y a una mayor eficiencia en los recursos médicos.
Si eres profesional de la salud y estás interesado en adquirir un arco en C o cualquier otro equipo de radiodiagnóstico, nuestro equipo de 4D se pondrá en contacto para asesorarte y buscar la mejor solución para tu clínica u hospital.
CONTACTA CON 4D
Kiko Ramos
CEO de 4D Medica. Experto en comercialización y distribución de equipamiento médico.
por Kiko Ramos | Dic 10, 2024 | Proyectos
En colaboración con la Fundación Amigos de Monkole en el Congo, 4D Medica ha ofrecido varios equipos y proporcionado formación específica a los médicos para mejorar la asistencia sanitaria en el Hospital Monkole, situado en el Congo.
Monkole, el hospital del Congo que ofrece atención sanitaria de calidad y sin coste
El Hospital Monkole se encuentra en Mont-Ngafula, una zona semiurbana ubicada al Sur-Oeste de Kinshasa, en la capital de la República Democrática del Congo. Esta región está constituida por más de 300.000 habitantes de escasos ingresos. La República Democrática del Congo, con alrededor 100 millones de habitantes, ocupa el puesto 180 de 193 en el Índice de Desarrollo Humano de 2022.
Su población se caracteriza por no tener acceso a los recursos básicos, como alimentación, vivienda y atención sanitaria. De este modo, además de la falta de infraestructuras y servicios, pocos habitantes de la región pueden permitirse la atención sanitaria que necesitan. Esto se debe a que, al no existir Seguridad Social, la Sanidad y los tratamientos médicos son privados y de pago.
Descubrimos la historia de Monkole: De sus inicios a la actualidad
Ante la situación precaria de la región del Congo, Monkole surgió en 1991 como el primer y único hospital del Congo que empezó a atender y alimentar a sus enfermos. Comenzó a funcionar como un dispensario en el que solo trabajaban un médico, un ayudante de laboratorio, tres enfermeros y otros cinco trabajadores. En el transcurso de los años, pasó a convertirse en un hospital de prestigio, donde los pacientes pueden acceder a una atención sanitaria de calidad y sin coste. Por tanto, si una persona necesita asistencia médica y no tiene recursos económicos, en Monkole podrá recibir el tratamiento que necesita.
En sus inicios, había una evidente carencia de infraestructuras. Por ello, los directores del Hospital Monkole, mediante la ayuda del programa PATS financiado por la Unión Europea, construyeron en 1997 un pozo y dos generadores eléctricos para tener acceso a agua potable y electricidad. A su vez, para resolver el problema de la contratación de personal cualificado, CECFOR creó un Instituto Superior de Enfermería (ISSI).
En 2001, se desarrolló una reforma sanitaria en el país y Monkole fue elevado al rango de Hospital General de Referencia en el municipio de Mont-Ngafula. Con ello, se iniciaron los planes de ampliación del hospital y, actualmente, ofrece un total de 120 camas y diferentes especialidades médicas.
A ello se suma la ayuda que proporcionan desde la Fundación Amigos de Monkole, una entidad que colabora con el hospital Monkole para promover el servicio sanitario. Ofrecen ayuda humanitaria y cooperación para que toda la población pueda acceder a la Sanidad, independientemente de sus recursos y su situación económica.
El equipamiento de 4D Medica y su colaboración con el Hospital Monkole
4D Medica ha colaborado con la Fundación Amigos de Monkole para proporcionar equipamiento médico a los servicios médicos del Hospital Monkole. En concreto, se suministraron los siguientes equipos y una formación al personal técnico para hacer uso de ellos:
Sistema de adquisición de rayos X digital de Vieworks
El equipo proporcionado es el sistema de adquisición de rayos X Vivix 4343 VW de Vieworks. Se trata de un detector de panel plano avanzado diseñado para la captura de imágenes radiográficas digitales de alta calidad. Mediante la tecnología de panel plano, se utiliza una matriz de transistores de película delgada (TFT) y sensores fotoconductores para la detección directa o indirecta de rayos X. Cuenta con un tamaño de 43 cm x 43 cm, por lo que es ideal para radiografías de cuerpo completo.
Proporciona imágenes con excelente nitidez que contribuye a una evaluación precisa y también cuenta con un rango dinámico amplio que tiene un contraste superior que ayuda a diferenciar las diversas estructuras anatómicas. Por otro lado, el modelo tiene una conectividad inalámbrica mediante wifi que facilita la integración en diferentes entornos clínicos y elimina la necesidad de cables. Al mismo tiempo, asegura la integración del sistema PACS y la vinculación con otros dispositivos médicos.
Otro de los aspectos a remarcar es que proporciona una adquisición rápida de las imágenes radiológicas. Por lo tanto, utiliza un menor tiempo entre exposición y visualización de la imagen, lo que optimiza los flujos de trabajo en radiología. Su bajo consumo energético hacen que sea un equipamiento médico eficiente en términos de consumo de energía y duración de la batería.
Se trata de un sistema de adquisición de rayos X que se puede utilizar en el área de radiología y permite realizar todo tipo de estudios: de tórax, extremidades, columna vertebral y abdomen. Cuenta con compatibilidad tanto con sistemas móviles de rayos X como en configuraciones fijas en salas de radiología.
Soporte para telemetrías de 4D Medica
También se ha incluido un soporte para telemetrías fabricado por 4D Medica. Se trata de un dispositivo o estructura diseñado para alojar, organizar y facilitar el manejo de los equipos de telemetría médica en unidades de cuidados intensivos (UCI), unidades coronarias o el traslado dentro de las instalaciones médicas. Estos equipos son utilizados para monitorear en tiempo real diversos parámetros fisiológicos de los pacientes, como la actividad cardíaca, la frecuencia respiratoria, la saturación de oxígeno y otros datos vitales.
Al ser un modelo portátil, se pueden trasladar entre diferentes habitaciones y áreas del hospital de forma práctica. Está equipado con ruedas giratorias y frenos para aportar mayor estabilidad y control durante su utilización.
Software de gestión de imágenes y telemedicina
El equipamiento médico aportado cuenta con el software de gestión de imágenes DxWorks. Entre sus características, destaca por ser un programa de adquisición de imágenes rápido y de alta calidad que permite monitorizar el estado del sistema, así como almacenar y gestionar las imágenes en la base de datos. Además, es compatible con la integración del sistema PACS QXLink 3 de Vieworks y permite la planificación de operaciones de forma remota.
Respecto al software de almacenamiento y visualización de imágenes QXLink 3, se trata del sistema de comunicaciones y archivo de imágenes PACS. Incorpora el almacenamiento de imágenes de pacientes en formato digital y sus principales funciones son la transmisión, administración y consulta de los diversos archivos médicos generados.
Arco Quirúrgico Siemens Siremóbil Compact L
El siguiente equipo es el sistema de fluoroscopia móvil Siemens Siremobil Compact L. También es conocido como arco quirúrgico y está diseñado para ofrecer imágenes de alta calidad en tiempo real durante procedimientos quirúrgicos y de diagnóstico. Se utiliza en especialidades de traumatología, cirugía general, urología, ginecología, cardiología e intervencionismo.
Se trata de un equipo que cuenta con un generador de rayos X integrado que permite obtener imágenes precisas con una dosis de radiación controlada. Su tecnología avanzada proporciona una alta resolución y un buen contraste para visualizar los diversos detalles anatómicos.
Otro de los componentes del equipamiento médico es su sistema de control intuitivo y el monitor dual que permiten acceder a una visualización en tiempo real y la posibilidad de revisar imágenes previamente capturadas sin interrumpir el procedimiento. Además, incluye una memoria integrada para guardar y recuperar imágenes sin necesidad de sistemas adicionales.
Ortopantomógrafo SATELEC Xmind
El Ortopantomógrafo Satelec X-Mind es un equipo de rayos X dental diseñado para capturar imágenes panorámicas de alta calidad, utilizadas en diagnósticos y planificación de tratamientos en odontología. El equipo cuenta con una alta tecnología que ayuda a visualizar la dentadura de forma completa en una sola exposición, tanto la dentadura como los huesos maxilares y las estructuras circundantes.
Este equipo médico se utiliza para realizar diagnósticos generales, como caries, infecciones y evaluación de estructuras óseas. A su vez, también es se usa para la planificación de tratamientos de ortodoncia, implantología y cirugía maxilofacial.
Formación específica de los equipos
Por parte de 4D Medica, se aportó una formación al personal técnico sobre el uso de los equipos a los diferentes equipos médicos que colaboran con la Fundación Amigos de Monkole. En concreto, se explicó el funcionamiento del software instalado en el equipo para poder planificar operaciones de forma remota desde España.
Conclusión
En este proyecto, 4D Medica ha hecho llegar sus equipos médicos a la región del Congo para hacer más accesible la salud para sus habitantes. Como especialistas en producción y comercialización de soluciones médicas en el campo del Diagnóstico por Imagen, 4D Medica ha proporcionado un equipamiento médico con una alta tecnología y una elevada resolución de imagen. De este modo, la población con escasos recursos también podrá acceder a un diagnóstico médico de calidad en diferentes especialidades médicas y poder acceder a los tratamientos y la asistencia sanitaria que necesitan.
Kiko Ramos
CEO de 4D Medica. Experto en comercialización y distribución de equipamiento médico.
por Kiko Ramos | Nov 14, 2024 | Análisis de equipos
La tomografía computarizada, también denominada como tomografía axial computarizada o TAC, se ha convertido en una de las técnicas de diagnóstico por imagen más utilizadas. Se trata de un procedimiento que utiliza un equipo especial de rayos X y computadoras avanzadas para obtener imágenes tridimensionales con diferentes cortes del cuerpo.
Desde su introducción clínica en 1971 ha experimentado sucesivos avances que han permitido su aplicación en diferentes campos de la medicina. Actualmente, se recurre a la tomografía computarizada para diagnosticar trastornos como el cáncer, afecciones cardiovasculares, procesos infecciosos, traumatismos y enfermedades del aparato locomotor. En el siguiente artículo, analizamos cómo funciona, para qué sirve y cuál es el origen y la evolución de esta prueba diagnóstica.
¿Cómo funciona un TAC?
Para realizar este diagnóstico por imagen, se utiliza un sistema de tomografía axial computarizada que incorpora unos escáneres de rayos X que generan imágenes tridimensionales con diferentes cortes del interior del organismo.
Estos cortes producidos reciben el nombre de imágenes tomográficas y permiten estudiar diversas regiones internas del cuerpo, desde órganos, huesos y tejidos blandos hasta vasos sanguíneos. A diferencia de la radiografía, que solo proporciona una representación bidimensional, el TAC permite observar las imágenes de forma tridimensional. Con ello, se puede analizar los tejidos con mayor detalle y claridad. Otro de los aspectos a destacar es que el escáner de TAC utiliza una fuente de rayos X y cuenta con una radiación ionizante superior a las de una radiografía.
Durante el procedimiento, el escáner de TAC gira alrededor de la abertura circular de una estructura en forma de rosca llamada Gantry. El paciente permanece recostado en una cama y se inserta en el interior del escáner para que el especialista puedan analizar los tejidos. Los detectores de rayos X se localizan frente a la fuente de rayos X y generan una serie de imágenes a través de diferentes cortes. Posteriormente, son trasmitidas a una computadora donde se puede visualizar y analizar el interior del organismo.
Medio de contraste en el TAC
Al igual que ocurre en las radiografías, es fácil obtener imágenes de las estructuras densas dentro del cuerpo, como por ejemplo los huesos. Sin embargo, los tejidos blandos son más difíciles de visualizar. Por ello, se han desarrollado medios de contraste que incrementan la visibilidad de los tejidos durante una radiografía o TAC. Contienen un conjunto de sustancias que son seguras para los pacientes y permiten detener los rayos X, por lo que los órganos se verán con mayor detalle en la prueba.
Por ejemplo, para examinar el sistema circulatorio, se inyecta en el torrente sanguíneo un medio de contraste intravenoso a base de yodo para iluminar los vasos sanguíneos.
¿Para qué sirve el TAC?
El TAC se utiliza como prueba de diagnóstico clínico, en los estudios de seguimiento para analizar el estado de salud del paciente, en la planificación de tratamientos de radioterapia e, incluso, para el cribado de personas asintomáticas que cuentan con factores de riesgo específicos. Una tomografía computarizada crea imágenes detalladas del cuerpo, que incluyen el cerebro, el tórax, la columna y el abdomen. En concreto, podemos destacar los siguientes usos:
- Ayudar a diagnosticar la presencia de un cáncer o tumor. Es una de las técnicas más utilizadas para examinar la presencia de cáncer colorrectal y cáncer de pulmón.
- Obtener información acerca del estadio de un cáncer.
- Determinar si un cáncer reacciona al tratamiento.
- Detectar el regreso o recurrencia de un tumor.
- Diagnosticar una infección.
- Técnica de apoyo para guiar un procedimiento de biopsia.
- Guiar algunos tratamientos locales, como la crioterapia, ablación con radiofrecuencia y la implantación de semillas radiactivas.
- Planificar la radioterapia de haz externo o la cirugía.
- Estudiar los vasos sanguíneos.
¿Cuándo surgió la tomografía computarizada?
La tomografía computarizada se introdujo en 1971 como una modalidad de rayos X que permitía obtener imágenes axiales del cerebro, por lo que era un método clínico que se utilizaba específicamente en el área de la neurorradiología. Su evolución ha convertido al TAC en una técnica de imagen versátil con la que se obtienen imágenes tridimensionales de cualquier área anatómica. Actualmente, se trata de un equipo de diagnóstico por imagen que cuenta con una amplia gama de aplicaciones médicas en oncología, radiología vascular, cardiología, traumatología o radiología intervencionista.
La evolución: De sus inicios hasta la actualidad
En 1971, se desarrollaron los primeros escáneres TAC de uso clínico. Durante estos primeros años, se utilizaba el escáner- EMI, con el que se podían obtener datos del cerebro y el tiempo de cálculo por imagen era de unos 7 minutos en total. Poco tiempo después, se desarrollaron escáneres aplicables a cualquier parte del cuerpo. En 1973, se empezaron a usar los escáneres axiales, cuyos equipos solamente contaban con una única fila de detectores de rayos X. Posteriormente, fue cuando surgieron los escáneres helicoidales o espirales, que incorporaban múltiples filas de detectores, por lo que su uso clínico tuvo una amplia difusión y son los que se utilizan en la actualidad.
Equipos TAC actuales: Principales mejoras y tipos
La evolución del equipamiento médico ha permitido obtener notables mejoras. En los sistemas actuales, la calidad de la imagen ha mejorado considerablemente y ofrecen tanto una resolución espacial como una resolución de bajo contraste. Además, hoy en día, también se dispone de escáneres TAC diseñados para aplicaciones clínicas específicas. Entre ellos, podemos destacar:
- Equipos de TAC específicos para la planificación de tratamientos en radioterapia: Estos escáneres ofrecen un diámetro de abertura mayor del habitual, por lo que permiten un estudio con un campo de visión más amplio. De este modo, las imágenes que se generan cuentan con mayor detalle y claridad.
- Equipos híbridos que integran escáneres de TAC con otras técnicas de imagen: Actualmente, existen soluciones híbridas. Entre ellas, podemos destacar el escáner TAC que incorpora un tomógrafo por emisión de positrones (PET) o un tomógrafo de emisión de fotón único (SPECT).
- Escáneres especiales para nuevas indicaciones en diagnóstico por imagen: Se han desarrollado equipos de TAC “de doble fuente”, que están equipados con dos tubos de rayos X, y también equipos de TAC “volumétricos”, que incorporan hasta 320 filas de detectores, lo que permite obtener datos completos de los órganos analizados en un único uso.
Conoce nuestros equipos de 4D Medica
Principales riesgos
Las pruebas por tomografía computarizada pueden realizar diagnósticos sobre enfermedades y afecciones graves, como cáncer, hemorragia o coágulos de sangre. Un diagnóstico temprano es fundamental para poner solución cuanto antes y poder salvar vidas. Sin embargo, es cierto que es una prueba que presenta algunos riesgos que es importante analizar:
Rayos X
Uno de los principales riesgos del TAC es que utiliza los rayos X, que producen radiación ionizante. Este tipo de radiación puede tener determinados efectos en el organismo y se trata de un riesgo que aumenta con el número de exposiciones a las que se somete una persona. No obstante, el riesgo de desarrollar cáncer por la radiación que emiten los rayos X es generalmente bajo.
Uso en embarazadas y niños
En el caso de las mujeres embarazadas, no existen riesgos para el bebé si el área del cuerpo donde se realizan las imágenes no es el abdomen o la pelvis. Pero, los profesionales médicos suelen realizar exámenes que no utilicen radiación, como la resonancia magnética o el ultrasonido. En cuanto a los niños, son más sensibles a la radiación ionizante, ya que tienen una esperanza de vida más larga y el riesgo a desarrollar cáncer puede ser mayor en comparación con los adultos.
Reacciones al medio de contraste
Por otro lado, otro aspecto a destacar es que algunos pacientes pueden tener reacciones alérgicas al medio de contraste y, en casos muy puntuales, insuficiencia renal temporal. Ante esta situación, no deben administrarse medios de contraste intravenoso a pacientes con función renal anormal.
Conclusión
Como hemos podido analizar, la tomografía computarizada o TAC resulta de gran utilidad para analizar de forma detallada y precisa ciertos tejidos y órganos internos. Mediante los rayos X, se pueden estudiar ciertas afecciones o enfermedades graves, por lo que es fundamental para el diagnóstico clínico y su aplicación en diferentes campos de la medicina.
¿Estáis interesado en un equipo TAC? Contacta con nosotros y te asesoraremos sin compromiso para que puedas escoger el equipo médico más adecuado para tu clínica u hospital.
CONTACTA CON 4D
Kiko Ramos
CEO de 4D Medica. Experto en comercialización y distribución de equipamiento médico.
por Kiko Ramos | Nov 12, 2024 | IA en medicina
El uso de las nuevas tecnología y la inteligencia artificial (IA) ha supuesto un antes y un después para muchos sectores. Uno de ellos ha sido la medicina, donde los últimos avances y aplicaciones se han visto influenciados por el desarrollo de la tecnología. La inteligencia artificial es una especialidad en el campo de la informática que se usa para producir programas a través de una serie de algoritmos que tienen la capacidad de pensar, aprender y tomar decisiones, como lo hacen los humanos.
¿Cómo funciona la IA?
La IA empezó a desarrollarse en la década de los 90 con el objetivo de crear un sistema informático que procesara los datos de forma similar al cerebro humano. Una de las ramas de la inteligencia artificial que más utilidad tiene en el sector sanitario es el aprendizaje automático. Este sistema tiene la capacidad de que las máquinas utilicen los algoritmos y aprendan de los datos, lo que mejora la toma de decisiones con la información procesada.
Mediante el uso de un software IA, se pueden automatizar de funciones y tareas, permitiendo que los profesionales sanitarios pueden procesar y analizar los datos médicos de manera más rápida y precisa. Esto tiene un notable impacto en las diferentes áreas del sector sanitario y fomenta una mejora de la gestión sanitaria. Entre los principales usos que ofrece la IA en el ámbito de la salud, encontramos que ayuda a desarrollar y optimizar procesos en el diagnóstico clínico, en la detección y prevención de enfermedades, en la atención sanitaria, en la investigación y en la creación o actualización de nuevos medicamentos.
A su vez, también ha sido determinante en el progreso de la telemedicina y en el desarrollo de tratamientos médicos personalizados. En el siguiente artículo, abordamos las principales aplicaciones de la IA en medicina y cómo están ayudando a crear un sistema sanitario más completo, ágil y efectivo.
Aplicaciones de la IA en la medicina
En los últimos años, la IA se ha incorporado a la medicina para fomentar una atención al paciente con mayor calidad, acelerar los procesos y lograr un aumento de la precisión diagnóstica. ¿Cuáles son las diferentes áreas en las que actualmente se utiliza la inteligencia artificial y qué mejoras han implicado?
Prevención de enfermedades y diagnóstico precoz
La IA es una herramienta clave en la prevención de enfermedades. Mediante el uso del Big Data, que consiste en la combinación de un conjunto de datos digitales sobre salud, datos genómicos y datos de comportamiento del paciente, se pueden identificar factores de riesgo y patrones que deriven en el desarrollo de ciertas enfermedades.
- Propagación de enfermedades: Por un lado, los algoritmos de machine learning pueden predecir la propagación de enfermedades como la gripe o el COVID-19, anticipándose a picos epidémicos y permitiendo tomar medidas preventivas.
- Detectar señales de enfermedades crónicas: Otra de sus aplicaciones es que se pueden identificar signos tempranos de enfermedades crónicas, como la diabetes o las enfermedades cardíacas. Las enfermedades crónicas se caracterizan por surgir de forma lenta y, en la mayoría de ocasiones, pasan desapercibidas hasta que derivan en complicaciones más graves. Por ello, el uso de la IA resulta de gran utilidad para detectar posibles signos de enfermedades en estudios médicos, como análisis de sangre, imágenes de ultrasonido o electrocardiogramas. En este caso, los algoritmos de la IA pueden detectar patrones de enfermedad cardiovascular a través de imágenes médicas como la resonancia magnética o las tomografías computarizadas.
- Predisposición de enfermedades genéticas: A través del uso de datos genómicos, la inteligencia artificial también puede analizar la predisposición a que surjan enfermedades genéticas. Los algoritmos de la IA se encargan de estudiar los patrones en el ADN para identificar variantes genéticas que podrían indicar un alto riesgo en el desarrollo de ciertas enfermedades. En oncología, se utiliza para poder predecir el riesgo de cáncer de mama o colon, permitiendo a los médicos diseñar planes de prevención personalizados.
Diagnóstico clínico
En el procesamiento e interpretación de imágenes para el diagnóstico, la IA ofrece algoritmos que mejoran la calidad y la precisión del diagnóstico clínico. Permiten reconocer patrones complejos en los datos de las imágenes de forma automática, eliminar el ruido para aumentar su calidad y establecer modelos tridimensionales a partir de imágenes de pacientes concretos. En este campo, podemos destacar la investigación realizada por parte de los investigadores de IBM en torno a un nuevo modelo de IA que puede predecir el desarrollo del cáncer de mama maligno.
Con unas tasas comparables con las obtenidas por los radiólogos humanos, este algoritmo puede aprender y tomar decisiones sobre el desarrollo del cáncer a partir de datos de imágenes y del historial del paciente. En concreto, pudo predecir el 87% de los casos analizados y también pudo interpretar el 77% de los casos no cancerosos. Por tanto, este modelo podría ser una herramienta fundamental para ayudar a los radiólogos a confirmar o desestimar casos positivos de cáncer de mama.
Tratamientos médicos personalizados
Otro de los usos de la IA en medicina es la búsqueda de tratamientos médicos personalizados para cada paciente. En función de un conjunto de factores, como el historial médico, su estilo de vida y su genética, los algoritmos de IA pueden analizar un gran volumen de datos genómicos y biomarcadores para identificar patrones y factores de riesgo.
Con ello, se puede desarrollar un tratamiento médico específico para las necesidades de paciente, incrementando la eficiencia y minimizando la aparición de efectos secundarios. Por ejemplo, en oncología, la IA ayuda a identificar el mejor tratamiento para cada tipo de cáncer, considerando la genética específica del tumor.
Atención sanitaria
La atención al paciente es una de las áreas donde la IA puede proporcionar un gran apoyo, tanto a los profesionales médicos como a los pacientes. En este caso, los asistentes virtuales basados en la IA son una solución idónea para automatizar funciones y tareas. Entre ellas, destacan la gestión de citas, la realización de consultas básicas sobre salud, la evaluación de síntomas y la administración de medicamentos.
Impulso de la telemedicina
Estos sistemas, además, han permitido la evolución de la telemedicina. En este sentido, los profesionales pueden monitorizar a los pacientes que padecen enfermedades crónicas de forma remota y recibir alertas de las posibles anomalías que pueden surgir en su estado de salud. Esto ofrece amplios beneficios a la hora de llegar a un mayor número de pacientes, especialmente a aquellos que viven en regiones que no cuentan con todos los servicios de salud en sus localidades y deben desplazarse para recibir atención médica.
Gestión de recursos en centros médicos y hospitales
Mediante la implementación de la IA en hospitales y laboratorios, se puede mejorar tanto la gestión de recursos materiales como humanos. Examinar grandes cantidades de datos procedentes de registros históricos puede ser esencial para prever los recursos necesarios en una situación concreta, impulsando una mejor gestión y optimización de los recursos disponibles. Esto puede ser de gran ayuda para evitar la saturación de los centros médicos en momentos de alta demanda y poder gestionar el inventario de suministros médicos y la disponibilidad de camas y medicamentos.
Investigación y desarrollo de medicamentos
La inteligencia artificial ha sido fundamental en el desarrollo de la investigación médica, tanto en la creación de nuevos medicamentos como en la optimización de los ensayos clínicos. La integración de la inteligencia artificial en el diseño de fármacos implica un enfoque multidisciplinar que combina tanto conceptos de química y biología como ciencias de la computación para acelerar el descubrimiento de nuevos tratamientos y soluciones médicas.
Para ello, se utilizan los modelos de IA creados con algoritmos de aprendizaje automático y aprendizaje profundo con el objetivo de analizar grandes cantidades de datos sobre compuestos químicos y biológicos y la interacción entre ellos.
Cirugía robótica
Los sistemas de cirugía robótica como Da Vinci utilizan la IA dentro del ámbito de la radiología intervencionaista. De este modo, se pueden realizar procedimientos quirúrgicos complejos con mayor control y precisión. Estos robots son controlados por los cirujanos para elaborar pequeñas incisiones, lo que ayuda a reducir el margen de error, realizar cirugías mínimamente invasivas y mejorar los tiempos de recuperación de los pacientes.
Otro aspecto clave en el que se puede aplicar la inteligencia artificial es en la creación de planes quirúrgicos personalizados. En este caso, se utilizan datos de cirugías anteriores para optimizar las técnicas y poder predecir las posibles complicaciones que pueden surgir durante las operaciones.
Formación
La IA tiene un papel clave en la formación técnica de los profesionales de la salud. Proporciona múltiples herramientas que ayuda a que los especialistas médicos puedan adquirir y perfeccionar sus habilidades en diferentes áreas, logrando aumentar sus conocimientos de forma más eficiente y personalizada.
Por un lado, las simulaciones médicas a través de la IA permiten que los estudiantes puedan poner en práctica procedimientos complejos y reducir el riesgo de errores. A su vez, destacan las plataformas de aprendizaje que utilizan la IA para ajustar los contenidos educativos en función del nivel de conocimiento que tenga el estudiante, con el propósito de obtener una mayor eficacia en el proceso de aprendizaje.
Conclusión
En resumen, la IA tiene una gran cantidad de aplicaciones en medicina y cada vez existen nuevas mejoras e innovaciones que ayudan a seguir avanzando en el sector sanitario.
¿Buscas implementar la inteligencia artificial en tu clínica u hospital? Conoce nuestro software IA, una solución inteligente para la gestión de imágenes médicas que te permitirá optimizar procesos y obtener diagnósticos más precisos y eficientes.
SOFTWARE 4D MEDICA
Bibliografía
APD. (s.f.).
Aplicaciones de la inteligencia artificial en la medicina. Asociación para el Progreso de la Dirección. Recuperado de
https://www.apd.es/aplicaciones-inteligencia-artificial-en-medicina/#:~:text=La%20IA%20puede%20acelerar%20el,efectividad%20y%20reduciendo%20efectos%20secundarios.
Sanofi. (s.f.). Inteligencia artificial en la salud. Campus Sanofi. Recuperado de https://pro.campus.sanofi/es/actualidad/articulos/inteligencia-artificial-salud
Pakdemirli, E. (2020). Artificial intelligence in radiology: Friend or foe? Radiology, 297(3), 509-510. https://doi.org/10.1148/radiol.2019182622
Sánchez Rosado, E. J., & Díez Parra, A. (2022). Inteligencia artificial en medicina: aplicaciones y desafíos. Economía Industrial, 423, 49-63. Ministerio de Industria, Comercio y Turismo. Recuperado de https://www.mintur.gob.es/Publicaciones/Publicacionesperiodicas/EconomiaIndustrial/RevistaEconomiaIndustrial/423/SA%CC%81NCHEZ%20ROSADO%20Y%20DI%CC%81EZ%20PARRA.pdf
Universidad Internacional de Andalucía. (2021). Inteligencia artificial en la medicina: el futuro de la salud. UNIA Blog. Recuperado de https://www.unia.es/vida-universitaria/blog/inteligencia-artificial-en-la-medicina-el-futuro-de-la-salud
United States National Library of Medicine. (2020). Artificial intelligence in healthcare and the implications for patient safety. JAMA Network Open, 3(4), e200033. Recuperado de https://pmc.ncbi.nlm.nih.gov/articles/PMC7752970/pdf/main.pdf
Asociación Mexicana de la Industria de Tecnologías de Información. (s.f.). Inteligencia artificial en salud: Transformación digital para el cuidado de la salud en México. Recuperado de https://amexcomp.mx/media/publicaciones/Libro_IA_Salud_Final_r.pdf
Merly Dayana Jurado-Sánchez, Eddy Maritza Pedroza-Charris, Blanca Mery Rolón-Rodríguez. (2021) ¿Cómo ha ayudado la inteligencia artificial en la medicina?. Convicciones, 8 (16), 6-20. https://www.fesc.edu.co/Revistas/OJS/index.php/convicciones/article/view/841
Kiko Ramos
CEO de 4D Medica. Experto en comercialización y distribución de equipamiento médico.